If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x=366
We move all terms to the left:
x^2+5x-(366)=0
a = 1; b = 5; c = -366;
Δ = b2-4ac
Δ = 52-4·1·(-366)
Δ = 1489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1489}}{2*1}=\frac{-5-\sqrt{1489}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1489}}{2*1}=\frac{-5+\sqrt{1489}}{2} $
| 158-w=24 | | 35=w/4+12 | | 185=92-w | | 5-4y=11 | | 7x-7/54=78/63 | | 7x-7/63=78/54 | | 1/2x=0.25 | | 3/4x-16=14 | | 3x-10=6x+64 | | 5x^2-16x-18=0 | | M=n/5+2 | | 4n-40=14n=14 | | 6x+1=-2x+11 | | 3(x+1)=2(1-5x)+6x+11 | | 8x+1+9x-16=180 | | 56=-48-8x | | 960=12x-60 | | 5.6g+8=2.6g+20 | | a+15+2a-17+a+15=180 | | 1.7=x^2 | | x-33+x-30+x-36=180 | | s-41+s-42+2s-41=180 | | -59=(-3x)-32 | | 2v-20+3v+17+v+15=180 | | (X-1)=(7x-5) | | 2a-20+2a+2a-16=180 | | y-15+32+y-19=180 | | 9+18x=12+6x | | 9+18x=22+6x | | -50=6x+28 | | 33+p-49+68=180 | | x+46+93+39x+-39=180 |